Primordial Comets

Dr. Björn J. R. Davidsson
Jet Propulsion Laboratory
California Institute of Technology
Pasadena (CA), USA

Outline

 Testing consequences of the collisional cascade in the Primordial Disk as envisioned by the "standard model":

 To what extent is water D/H values in the comet population homogenized by mixing?

CO₂ with trapped HCN, CH4, Ar, N₂, and CO
 (Altwegg, Hansen): does such ice survive collisional heating?

Conclusions

 D/H homogenization appear efficient: <0.1% probability of finding a Hartley 2 (D/H=7.7 times solar) and a 67P (D/H=25.2 times solar) among 9 objects

 Collisional heating during disruption of D≥25km bodies likely leads to global CO₂ loss

 Comets like Rosetta's 67P are not likely to have been formed as part of a collisional cascade. They are most likely pristine

Background

- Rosetta rejuvenated a long-standing debate on whether comets have been processed in highspeed collisions
- Comets are not primordial bodies
 - Stern (1988, Icarus 73, 499); Farinella & Davis (1996, Science 273, 938); Stern & Weissman (2001, Nature 409, 589); Weissman et al. (2004, Comets II); Morbidelli & Rickman (2015, A&A 583, A43); Rickman et al. (2015, A&A 583, A44); Jutzi et al. (2017, A&A 597, A61); Jutzi & Benz (2017, A&A 597, A62)
- . Comets are primordial bodies
 - Weissman (1986, Nature 320, 242); Weaver (2004, Science 304, 1760); Brownlee et al. (2004, Science 304, 1764); Belton et al. (2007, Icarus 187, 332); Davidsson et al. (2016, A&A 592, A63); Poulet et al. (2016, MNRAS 462, S23); Basilevsky et al. (2017, PSS 140, 80); Fulle & Blum (2017, MNRAS 469, S39)
- This question is important: how does comet exploration contribute to Solar System science?
 - Do the physical properties of comets teach us about the initiation of planet formation?
 - Do the physical properties of comets teach us about disruption and gravitational re-accumulation?
 - The notion that the *chemical and mineralogical* properties date back to the Solar Nebula is much less controversial

"Standard model"

- There were ~ 2·10¹¹ comets with D>2.3km in the Primordial Disk (Brasser & Morbidelli (2013, *Icarus* **225**, 40):
 - About 117±50 visual JFCs with D>2.3km
 - Fractional decay rate -(1.63±0.6)·10⁻¹⁰ yr⁻¹ yield ~2·10⁹ comets in the Scattered Disk
 - The Scattered Disk is ~1% of the Primordial Disk, hence ~ 2 · 10¹¹ comets
- The differential size distribution index is in the range -3.5 \leq q \leq -2.5 (e.g., Morbidelli & Rickman 2015, A&A 583, A43)
- The Primordial Disk is modestly dynamically excited: collision velocities typically 240-950 ms⁻¹ and intrinsic collision probabilities significant among zone I (15-20AU), zone II (20-25AU), and zone III (25-30 AU)
- Nominal Primordial Disk lifetime: ~ 400 Myr (e.g., Morbidelli et al. 2012, EPSL 355-356, 144)

Target Projectile Target	I	II	III
I	$\begin{array}{c} 1.85 \times 10^{-20} \\ 0.78 \\ 0.23 \end{array}$	3.75×10^{-21} 0.74 0.24	$1.00 \times 10^{-24} \\ 0.95 \\ 0.20$
П	3.75×10^{-21} 0.74 0.24	8.95×10^{-21} 0.44 0.33	7.95×10^{-22} 0.38 0.37
III	1.00×10^{-24} 0.95 0.20	7.95×10^{-22} 0.38 0.37	7.32 × 10 ⁻²¹ 0.24 0.51

Image credit: Morbidelli & Rickman 2015, A&A 583, A43

Deuterium

- Work done in collaboration with Dr. Sona Hosseini at JPL
- Motivation for the work: accretion of foreign material during cratering, shape changing, subcatastrophic, and catastrophic collisions
- Description of the numerical evolution model
- First results

Accumulation of foreign material

- Critical energies Q for various impact types from SPH and scaling laws
- Matching Q with kinetic energy of projectiles yield their radii

- For any target in zone i: number of projectiles (Ν_{ω|}) from zone j
- Total mass accumulated

$$Q_{\rm crit} = aR^{3\mu}V^{2-3\mu}$$

Image credit: Jutzi & Benz (2017, A&A 597, A62)

Scaling	μ	a
Q_{D}^{*}	0.42	4.00e-4
Q_{reshape} (average)	0.42	2.50e-6
$Q_{\rm sub} (0.4)$	0.42	1.66e-5
$Q_{\rm sub}$ (0.7)	0.42	4.90e-5

$$N_{\text{coll}} = P_{i} \delta t \int_{r_{\text{min}}}^{r_{\text{max}}} (R_{t} + r)^{2} N_{0} r^{-q} dr$$

$$M = \frac{4\pi\rho}{3} P_{i} \delta t \int_{r_{min}}^{r_{max}} (R_{t} + r)^{2} N_{0} r^{-q} r^{3} dr$$

Cratering collisions

Low-velocity cratering in porous targets leads to high retention of projectile material.

Housen & Holsapple (2012). Cratering without ejecta. *Icarus* **219**, 297

Image credit: de Niems *et al.* (2018, *Icarus* **301**, 196)

Image credit: NASA/JPL-Caltech/SSI

$$F = 1 - \exp\left(-N_{\text{coll}}\right)$$

Zone I, q=-3.0:

Target diameter [km]	Projectile diameter [km] (catastrophic)	Mean lifetime [Myr]	Fraction of population gone by 20 Myr	Diameter (upper limit) of <i>cratering</i> objects	Total accumulated mass (% of target)
128	70	210	9%	13 km	10.0
64	26	145	13%	4.8 km	5.0
32	9.7	97	19%	1.8 km	2.5
16	3.6	62	27%	670 m	1.2
8	1.4	38	40%	250 m	0.5
4	0.5	24	57%	94 m	0.3

Shape-changing collisions

Image credit: NASA/JPL/JHUAPL

50km Mathilde: 20-33km craters caused by 2-3km projectiles exemplify shape-changing impacts

Zone I, q=-3.0:

Target diameter [km]	Projectile diameter [km] (catastrophic)	Mean lifetime [Myr]	Fraction of population gone by 20 Myr	Diameter range of shape-changing objects [km]	Total accumulated mass (% of target)
128	70	210	9%	13-35	22.0
64	26	145	13%	4.8-13	10.4
32	9.7	97	19%	1.8-4.8	4.8
16	3.6	62	27%	0.67-2.2	2.2
8	1.4	38	40%	0.25 - 0.99	1.0
4	0.5	24	57%	0.09 - 0.41	0.4

Sub-catastrophic collisions

Image credit: Jutzi & Benz (2017, A&A 597, A62)

Zone I, q=-3.0:

Target diameter [km]	Projectile diameter [km] (catastrophic)	Mean lifetime [Myr]	Fraction of population gone by 20 Myr	Diameter range of subcatastrophic objects [km]	Total accumulated mass (% of target)
128	70	210	9%	35-70	41.3
64	26	145	13%	13-26	18.2
32	9.7	97	19%	4.8-9.7	8.0
16	3.6	62	27%	2.2-3.6	3.5
8	1.4	38	40%	0.99 - 01.4	1.5
4	0.5	24	57%	0.41 - 0.50	0.7

Catastrophic collisions

Image credit: Michel et al. (2015, PSS 107, 24)

Target diameter [km]	Projectile diameter [km] (catastrophic)	Mean lifetime [Myr]	Fraction of population gone by 20 Myr	Total accumulated mass (% of target)
128	70	210	9%	16.1
64	26	145	13%	6.7
32	9.7	97	19%	2.8
16	3.6	62	27%	1.2
8	1.4	38	40%	0.5
4	0.5	24	57%	0.2

Numerical Code

- Mass at 15-30 AU: surface density prop. to r_h⁻¹
- Initial D/H (vs. solar): linear increase from f=5.2 (15 AU) to f=27.7 (30 AU)
 - Average and encapsulate the 9 known OCC/JFC; not get far below terrestrial f=7.4; 11% "Hartley 2's" (f≤7.7) and 11% "67P's" (f≥25.2)
- Small time steps (modeling 400 Myr)
 - For each size (D=4-140km, 1km resolution) and for each permutation of target/projectile zone:
 - _ Accumulation phase (cratering/shape changing/subcatastrophic collisions):
 - (N_{coll} depends greatly on considered collision type, time step and target/projectile zones)
 - N_{mi}>200: projectiles bring average f from their zone of origin
 - . N_{coll} =1: all permutations of target and projectile f-values considered
 - 1<N_{coll}<200: weighted average of above f-distributions
 - . N_{coll} <1: the N_{coll} =1 approach applied to appropriate subset of the population
 - _ Fragmentation phase
 - N_{cat} (number of disrupted bodies)>200: all permutations of target and projectile f-values considered
 - N_{cat} <200: random selection of target/projectile f-values
 - Fragments populate smaller size bins; change local f-distribution proportionally

Results (example)

D=4km bodies, q=-3.0, one plot per zone

Local f-distributions *narrows* (majority of bodies) due to mixing of ice with different D/H ratios during collisions

Local f-distributions *shifts* and *broaden* (minority of bodies) due to exchange with other zones.

Consistency with observations

Oort clond

Partin

Saturn

Uranus

Orange Bz Hyakutake

C/1996 Bz Hyakutake

Soog/Pt Garrad

A SP HMP

10-2

10-2

Image credit: Altwegg *et al.* 2015 (*Science* **347**, 1261952)

q=-3.0: entire population (zones merged)

t=0: 11% "103P" and 11% "67P"

t=400Myr: 0.06% "103P" and 2.1% "67P"

Drawing 9 objects randomly (10⁴ times): probability of simultaneously having one 103P and one 67P:

t=0: 39%

t=200 Myr: 11%

t=400 Myr: 0.1%

q=-2.5:

t=200 Myr: 1% t=400 Myr: 0.01%

q=-3.5:

t=200 Myr: 4%

t=400 Myr: 0%

Heating during collisions

- Motivation
- The thermal code NIMBUS
- First results

Motivation

Target diameter [km]	Projectile diameter [km] (catastrophic)	Time when 10% of targets disrupted [Myr]	Specific energy [J kg ⁻¹]	Temperature increase [K] (assuming c=250 J kg ⁻¹ K ⁻¹)
128	102	62	4.1·10 ⁴	164
64	38	44	1.7·10 ⁴	69
32	14	30	7.2·10 ³	29
16	5.3	20	3.0·10 ³	12
8	2.0	12	1.2·10 ³	5
4	0.7	8	5.2·10 ²	2

q=-3.0, zone II

Catastrophic disruption of a D=5km parent with a largest fragment carrying 50% of the original mass (D=4km, 67P-like nucleus) results in negligible heating (also see, e.g., Jutzi & Benz, 2017, A&A 597, A62)

But heating of parent bodies higher up in the collisional cascade chain brings body dangerously close to the CO₂ sublimation temperature (~80K) when added to the ~55K ambient temperature at the center of the Primordial Disk.

Condensed CO₂ the likely host of HCN, much of the CO, N₂, Ar, and CH₄; all these species at risk.

NIMBUS

Numerical Icy Minor Body nUmerical Simulator

- Solar heating (time-dependent luminosity for 1 solar-mass protostar)
- Thermal reradiation surface cooling
- 2D heat conduction (radial, latitudinal), function of temperature and porosity
- Temperature-dependent specific heat capacities (80% forsterite, 20% water ice)
- Catastrophic impacts producing daughters with 50% mass of parent
- Half the energy of the projectile, minus kinetic energy losses to other fragments (Benavidez & Camp Bagatin 2009, PSS 57, 201) heat parent homogeneously in a short pulse event
- Fed as initial temperature to new smaller body that cools until the next hit

Example

D=64km

T=20K at 0.3Myr after CAI, adjusting to protostar heating to T=53K at the core.

Impacted at t=44.2 Myr, a D=50.8km daugther formed with T=110K

This is far above the sublimation temperature of CO₂ and its trapped species

Example

Consecutive hits elevates temperature above 80K at disruption of D>=25km bodies

Conclusions

 D/H homogenization appear efficient: <0.1% probability of finding a Hartley 2 (D/H=7.7 times solar) and a 67P (D/H=25.2 times solar) among 9 objects

 Collisional heating during disruption of D≥25km bodies likely leads to global CO₂ loss

 Comets like Rosetta's 67P are not likely to have been formed as part of a collisional cascade. They are most likely pristine